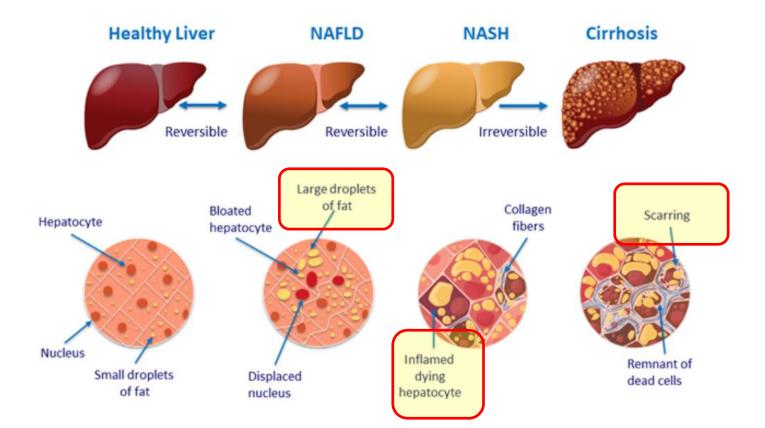
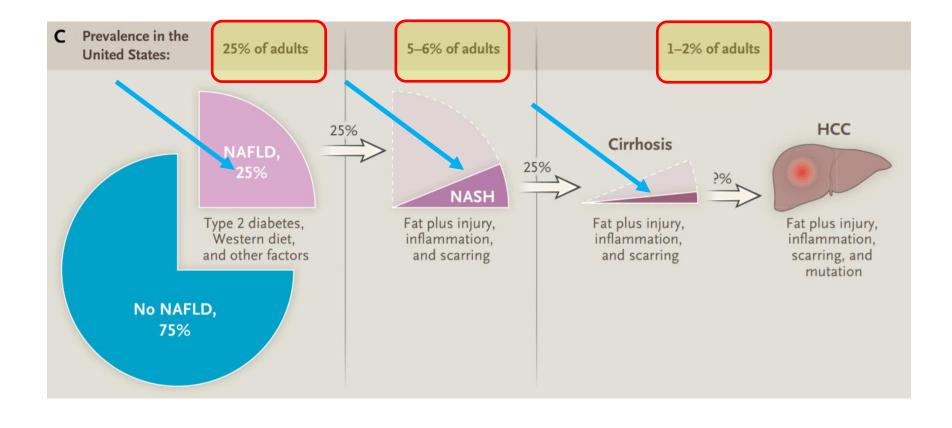

Non Alcoholic Fatty Liver Disease

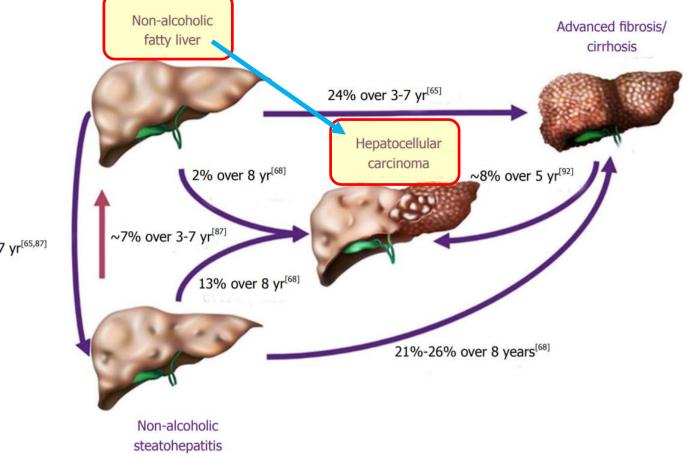
(2019.02.20)

Kosin University College of Medicine Department of Internal Medicine Division of Hepatology Kwang II Seo

- Introduction
- Etiology and Mechanism of Fatty liver disease
- Assessment of Fatty liver disease
- Therapeutic approach of Fatty liver disease
- Conclusion



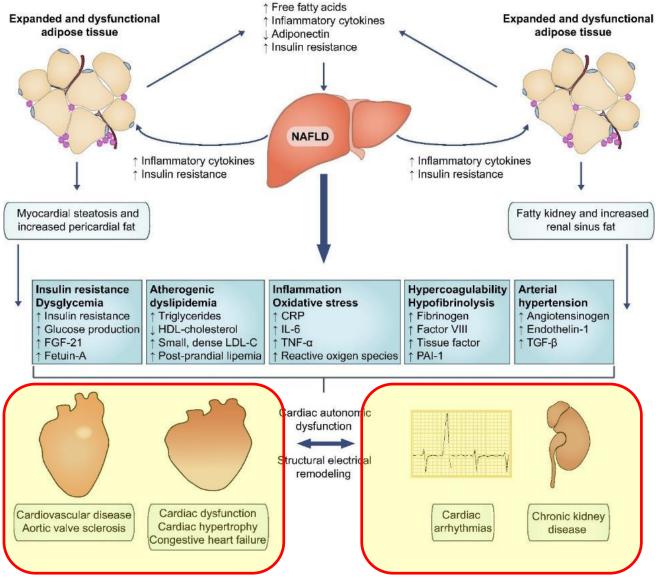

TABLE 2. NAFLD and Related Definitions


- NAFLD Encompasses the entire spectrum of FLD in individuals without significant alcohol consumption, ranging from fatty liver to SH to cirrhosis
- NAFL Presence of ≥5% HS without evidence of hepatocellular injury in the form of ballooning of the hepatocytes or evidence of fibrosis. The risk of progression to cirrhosis and liver failure is considered minimal.

NASH Presence of ≥5% HS with inflammation and hepatocyte injury (ballooning) with or without fibrosis. This can progress to cirrhosis, liver failure, and rarely liver cancer.

NASH cirrhosis Presence of cirrhosis with current or previous histological evidence of steatosis or SH

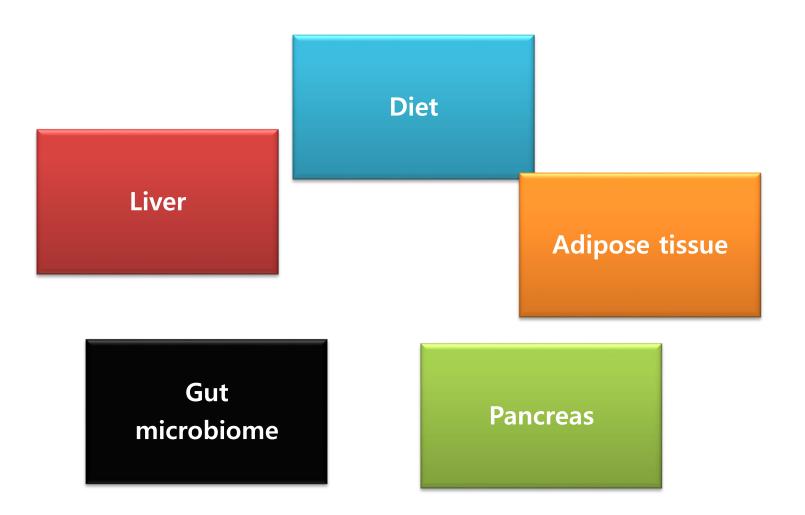
44-64% over 3-7 yr^[65,87]


В

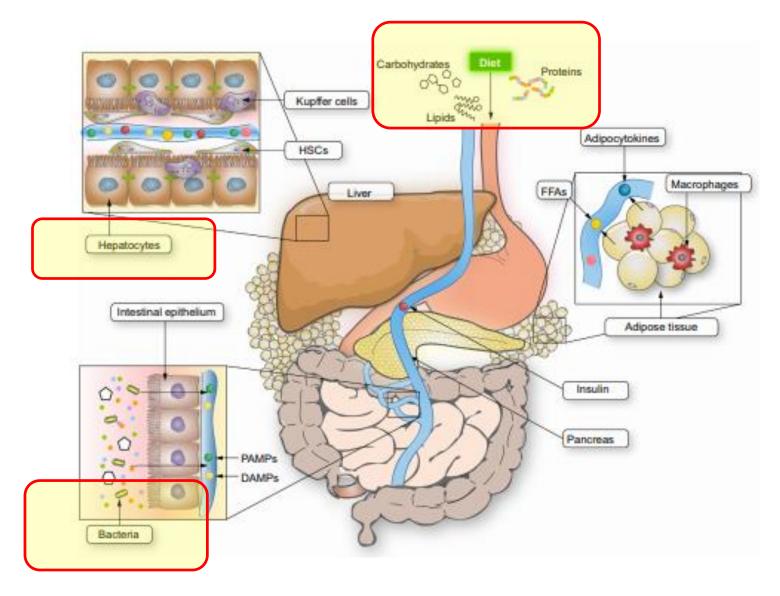
Study (Asia) Prop (in %) Events Total 95%-CI Reference 984 2241 Cai, 2014 (China) 43.91 [41.84; 45.99] 26 Kim, 2012 (Korea) 1617 4023 40.19 38.67; 41.73] 36 25 [35.91; 37.76] Cai, 2013 (China) 3906 10605 36.83 122 + Dassanayake, 2009 (Sri Lanka) 974 2985 32.63 30 [30.95; 34.34] 2553 9159 27.87 34 Ju, 2013 (Korea) 26.96; 28.80] 27.30 27.08; 27.52] 33 Jeong, 2013 (Korea) 44196 161891 [26.09; 28.27] 41 Shen, 2014 (Taiwan) 1769 6511 27.17 Kim, 2014 (Korea) 45 166 27.11 20.51; 34.54] 37 Chang, 2013 (Korea) 11652 43166 26.99 [26.58; 27.41] 27 Hong 2012 (China) 625 2523 -24 77 [23.10; 26.51] 32 Park, 2006 (Korea) 1240 5228 23.72 [22.57; 24.90] 40 Omagari, 2002 (Japan) 320 1559 + 20.53 [18.55; 22.62] 39 Hamaguchi, 2005 (Japan) 812 4401 18.45 [17.31; 19.63] 31 10/01 Chen, 2006 (Taiwan) 372 2520 14.76 [13.40; 16.21] 28 Random effects model 256978 27.37 23.29; 31.88] Heterogeneity: I-squared=99.2%, tau-squared=0.1673, p<0.0001 10 40 50 20 30 60 0

NAFLD Prevalence in Asia

Population	Outcome	Incidence Rate Per 1,000 Person-Years*	Number of Studies	95% CI	l ² (%)	Follow-up (Years)
NAFLD	CVD-specific mortality	4 79	6	(3.43-6.7)	91.17	12.96
NAFLD	HCC	0.44	3	(0.29-0.66)	0.00	5.82
NAFLD	Liver-specific mortality	0.77	7	(0.33-1.77)	91.84	13.17
NAFLD	Overall mortality	15.44	7	(11.73-20.34)	97.17	13.17
NASH	Advanced fibrosis	67.95	3	(46.84-98.56)	9.80	4.05
NASH	HCC	5.29	1	(0.75-37.56)	NA	4.50
NASH	Liver-specific mortality	11.77	3	(7.1-19.53)	0.00	8.08
NASH	Overall mortality	25.56	2	(6.29-103.8)	73.85	6.17
		IRR*				
NAFLD	Liver-specific mortality	1.94	5	(1.28-2.92)	26.78	13.38
NAFLD	Overall mortality	1.05	5	(0.7-1.56)	97.99	13.38
NASH	Liver-specific mortality	64.6	3	(35.43-117.8)	0.00	8.08
NASH	Overall mortality	2.56	2	(0.63-10.39)	73.76	6.17
		AHR Ratio*				
NAFLD	Liver-specific mortality	2.6	5	(0.91-7.42)	76.66	13.23
NAFLD	Overall mortality	1.04	5	(1.03-1.04)	0.08	13.23
		Fibrosis Progression				
NASH	Percent fibrosis progression [†]	40.76	4	(34.69-47.13)	5.70	4.91
NASH	Mean fibrosis annual progression rate [†]	0.09	2	(0.06-0.12)	0.00	4.01


TABLE 3. Incidence and IRR for Progression of NAFLD and NASH

Byrne CD, Targher G. J Hepatol 2015


- Introduction
- Etiology and Mechanism of Fatty liver disease
- Assessment of Fatty liver disease
- Therapeutic approach of Fatty liver disease
- Conclusion

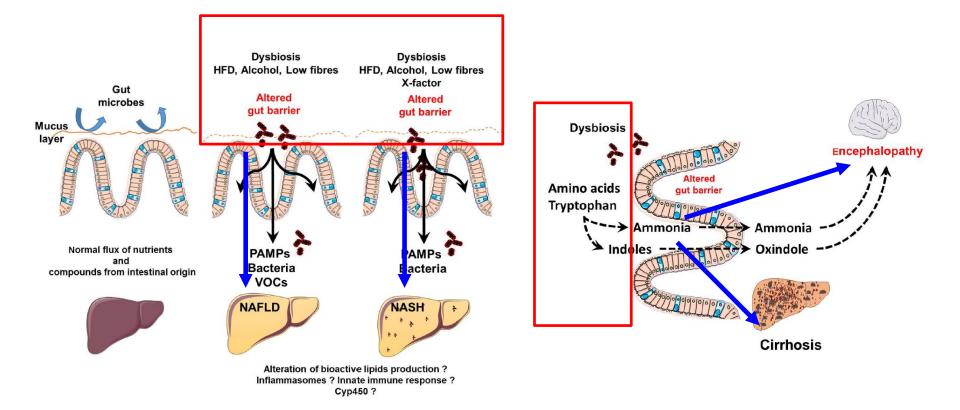
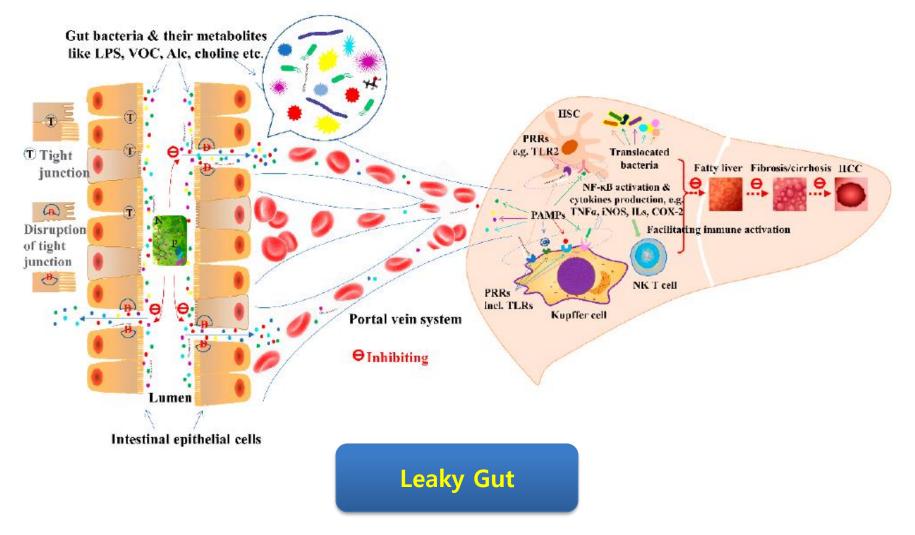
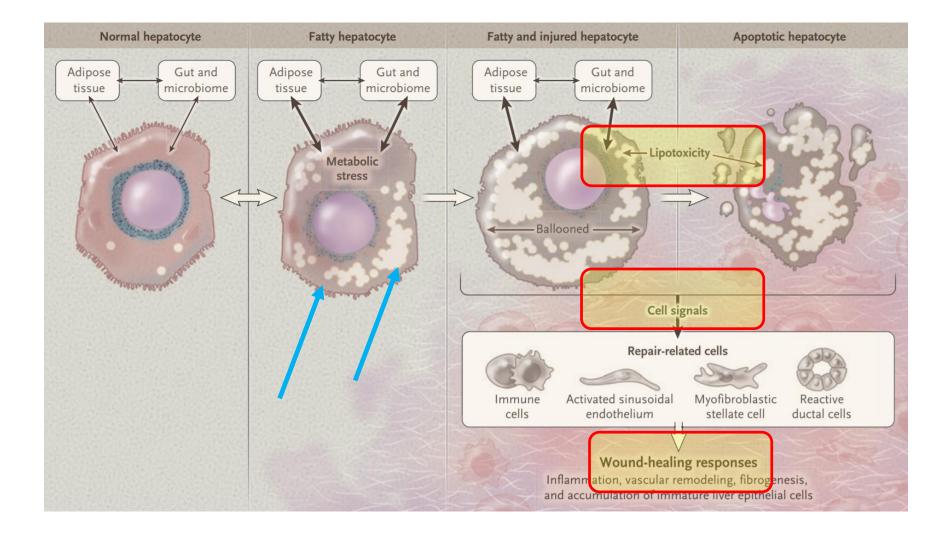
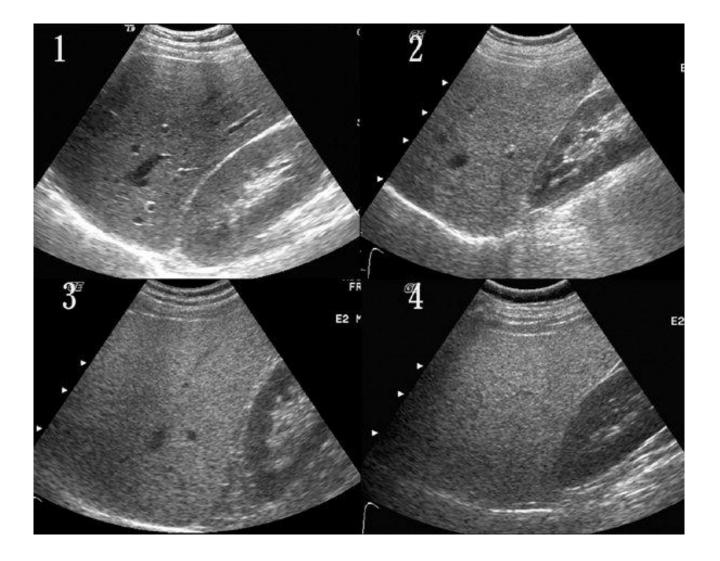


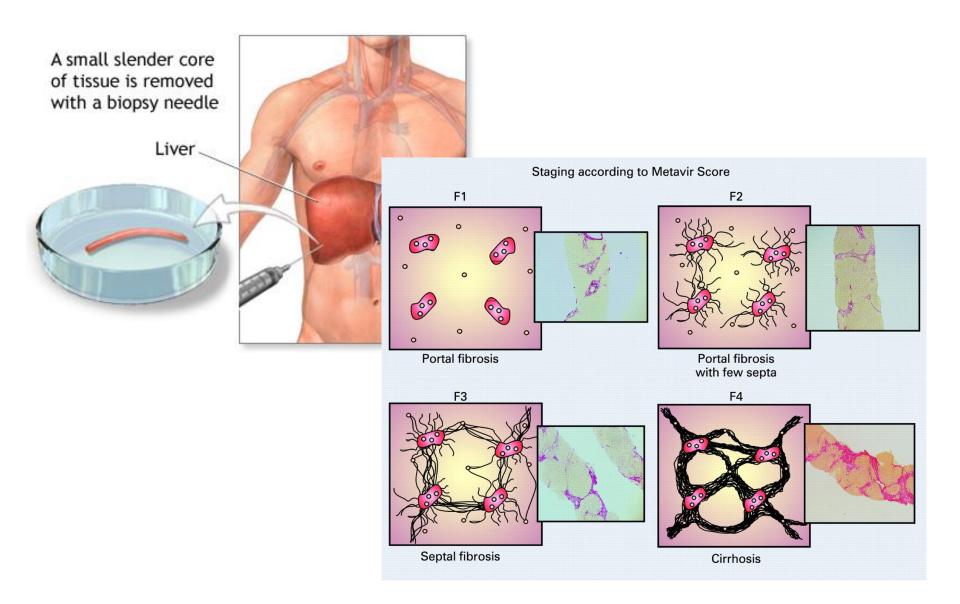
TABLE 3. Risk Factors Associated With NAFLD

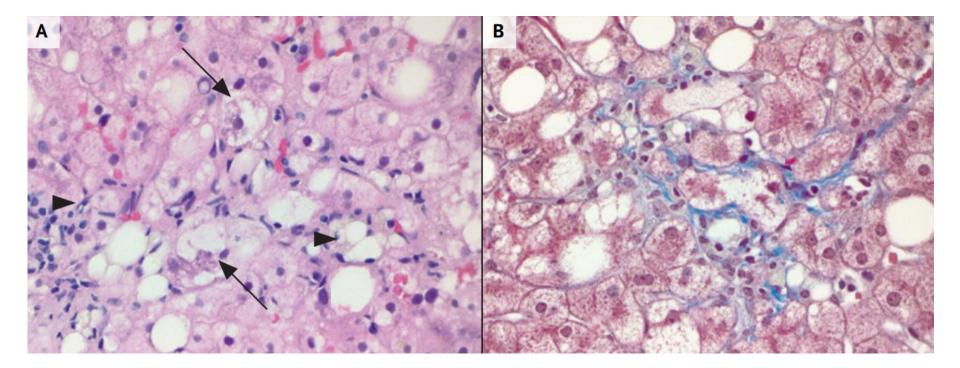
Common Conditions	Other Conditions Associated
With Established Association	With NAFLD
Obesity T2DM Dyslipidemia MetS* Polycystic ovary syndrome	Hypothyroidism Obstructive sleep apnea Hypopituitarism Hypogonadism Pancreatoduodenal resection Psoriasis

*The Adult Treatment Panel III clinical definition of MetS requires the presence of three or more of the following features: (1) waist circumference greater than 102 cm in men or greater than 88 cm in women; (2) TG level 150 mg/dL or greater; (3) HDL cholesterol level less than 40 mg/dL in men and less than 50 mg/dL in women; (4) systolic blood pressure 130 mm Hg or greater or diastolic pressure 85 mm Hg or greater; and (5) fasting plasma glucose level 110 mg/dL or greater.⁽²⁸⁷⁾


Table 1. Effects and mechanisms of natural products and probiotics on non-alcoholic fatty liver disease (NAFLD) by modulating gut microbiota.


Factors that Affect NAFLD	Study Type	Effects and Mechanisms
Probiotics		
Lactobacillus johnsonii BS15 (2×10^7 colony-forming units (CFU)/0.2 mL or 2×10^8 CFU/0.2 mL)	In vivo (in mice)	Enhancing antioxidant d efence system, suppressing insulin r esistance, restoring mitochondrial functions, improving intestinal permeability, and modulating gut flora
Lactobacillus rhamnosus GG (5 $ imes$ 10 ⁷ CFU/g body weight)	In vivo (in mice)	Altering the beneficial bacteria in the distal small intestine, improving the intestinal barrier, reducing lipopolysaccharide (LPS) levels in portal venous blood, attenuating inflammation, and inhibiting fatty acid accumulation in the liver
A combination of live <i>Bifidobacterium infantis</i> and <i>Lactobacillus acidopilus</i> $(0.5 \times 10^6 \text{ CFU})$ and live <i>Bacillus cereus</i> $(0.5 \times 10^5 \text{ CFU})$	In vivo (in rats)	Ameliorating gut microbiota dysbiosis, restoring intestinal barrier integrity decreasing serum inflammatory cytokines, improving liver pathology, attenuating increased serum liver enzymes and glycometabolic biomarkers, possibly through the LPS/toll-like receptor 4 (TLR4) signaling pathway
A synbiotic comprising <i>Lactobacillus fermentum</i> CECT5716 and fructo-oligosaccharides	In vivo (in rats)	Preventing hepatic steatosis and mitigating insulin resistance through modulation of gut microbiota, accompanying markedly improved dysbiosis and barrier function.

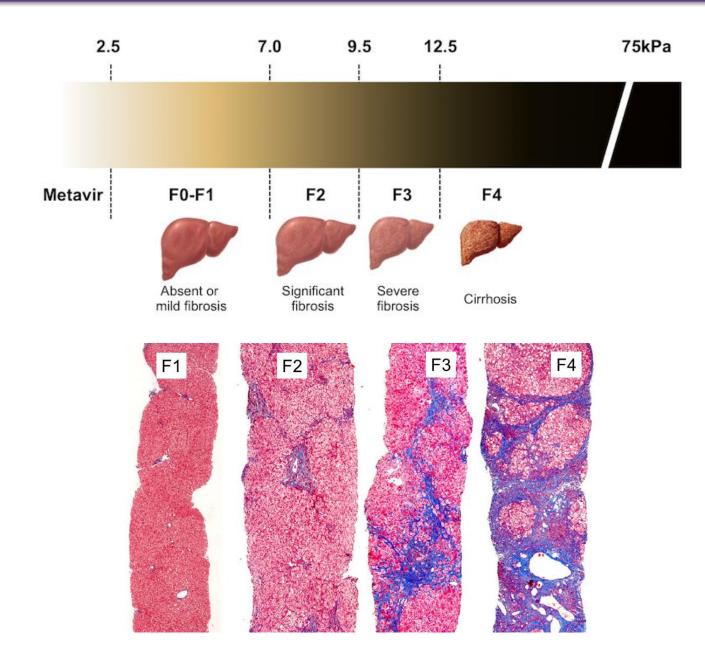


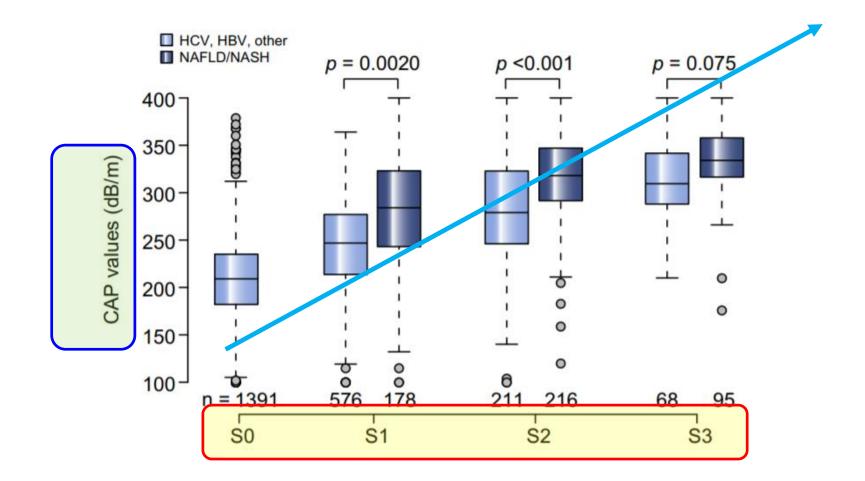
- Introduction
- Etiology and Mechanism of Fatty liver disease
- Assessment of Fatty liver disease
- Therapeutic approach of Fatty liver disease
- Conclusion

ballooned hepatocytes

inflammatory infiltrate

fibrosis


Diehl AM, Day C. NEJM 2017



- Cutting wedge technology : CHEESE scanner
- Originally developed for farmers to test the **ripeness** of their product

Stage 1 - 5~33% : 238 이상 Stage 2 - 34~66% : 260 이상 Stage 3 - >66% : 293 이상

Contents

- Introduction
- Etiology and Mechanism of Fatty liver disease
- Assessment of Fatty liver disease
- Therapeutic approach of Fatty liver disease
- Conclusion

Energy restriction

- Calorie restriction (500–1,000/day)
- 7–10% weight loss target
- Long-term maintenance approach

Fructose intake

 Avoid fructose-containing food and drink

Daily alcohol intake

Strictly below 30 g men and 20 g women

Coffee consumption

No liver-related limitations

Comprehensive lifestyle approach

Macronutrient composition

- Low-to-moderate fat
- Moderate-to-high carbohydrate
- Low-carbohydrate ketogenic diets or high protein

Physical activity

- 150–200 min/week moderate intensity in 3–5 sessions
- Resistance training to promote musculoskeletal fitness and improve metabolic factors

Table 1. Lifestyle Modifications to Mitigate Nonalcoholic Steatohepatitis.*

Lose 7% of body weight if overweight or obese

Limit consumption of fructose-enriched beverages

Limit consumption of alcohol (≤1 drink/day for women and ≤2 drinks/day for men)

Drink two or more cups of caffeinated coffee daily

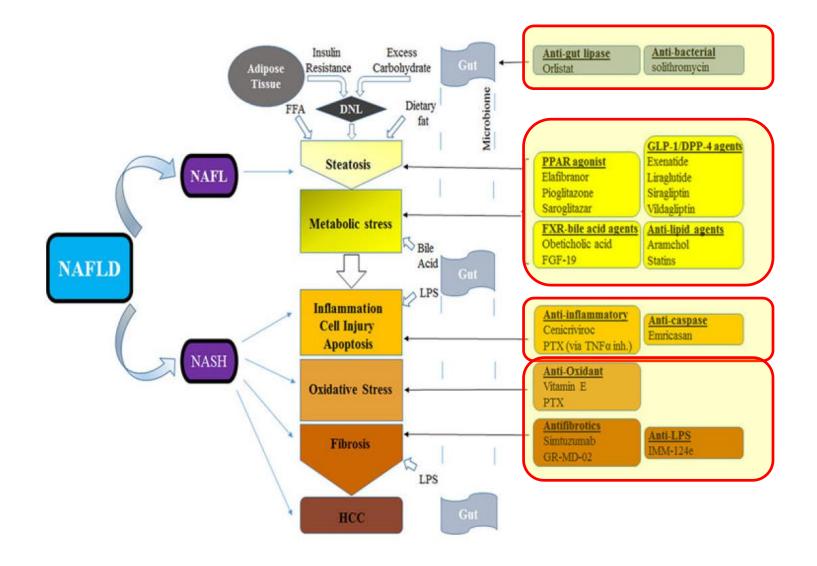


Table 2. Pharmacotherapies for Nonalcoholic Steatohepatitis Evaluated in Phase 2 or 3 Clinical Trials.*

Pharmacologic Agent	Therapeutic Target			
	Metabolic Stress	Inflammation	Fibrosis	
Vitamin E†	Yes	Yes	No	
Pioglitazone (PPAR- γ agonist)†	Yes	Yes	Yes	
Obeticholic acid (FXR agonist)†	Yes	Yes	Yes	
Chemokine receptor 2 and 5 antagonists	No	Yes	Yes	
PPAR- $lpha$ and PPAR- δ agonists	Yes	Yes	Yes	
Lysyl oxidase–like 2 inhibitor	No	No	Yes	
Galectin 3	No	Yes	Yes	
Bovine milk colostrum	No	Yes	Yes	
Stress-activated kinase 1 inhibitor	Yes	Yes	Yes	
FGF-21	Yes	Yes	Yes	
FGF-19–like agent	Yes	Yes	Yes	

HEPATOLOGY

PRACTICE GUIDANCE | HEPATOLOGY, VOL. 67, NO. 1, 2018

- Treatment indication
 - biopsy-proven NASH and fibrosis

• Weight loss

- 3%-5% : improve steatosis
- 7%-10% : improve histopathological features of NASH, including fibrosis.

HEPATOLOGY

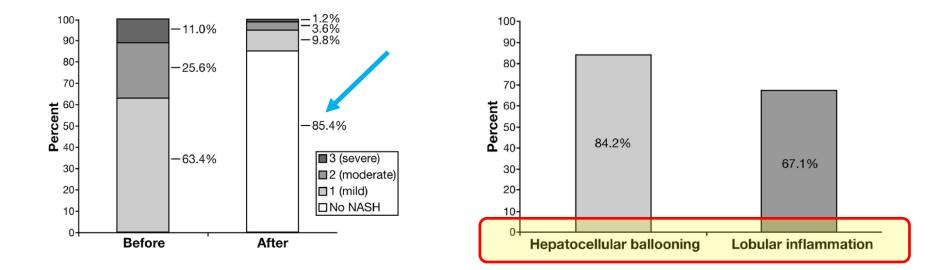
PRACTICE GUIDANCE | HEPATOLOGY, VOL. 67, NO. 1, 2018

- Metformin
 - not recommended
- Pioglitazone
 - improves liver histology (in biopsy-proven NASH)
- GLP-1 agonists
 - premature to consider
- Vitamin E
 - with biopsy-proven NASH (without DM, without cirrhosis)

HEPATOLOGY

PRACTICE GUIDANCE | HEPATOLOGY, VOL. 67, NO. 1, 2018

- BARIATRIC SURGERY
 - can be considered
 - premature to consider foregut bariatric surgery as an established option to specifically treat NASH
 - case-by-case basis by an experienced bariatric surgery program.


- BARIATRIC SURGERY
 - an option in patients unresponsive to lifestyle changes and pharmacotherapy
 - reduces weight and metabolic complications
 - stable results in the long term

CrossMark

Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients

Guillaume Lassailly,^{1,2,*} **Robert Caiazzo**,^{3,4,*} David Buob,⁵ Marie Pigeyre,⁶ Hélène Verkindt,⁴ Julien Labreuche,⁷ Violeta Raverdy,⁴ Emmanuelle Leteurtre,⁵ Sébastien Dharancy,^{1,2} Alexandre Louvet,^{1,2} Monique Romon,⁶ Alain Duhamel,⁷ François Pattou,^{3,4} and Philippe Mathurin^{1,2}

¹Service d'Hépato-Gastroentérologie; ²Unité Inserm U 995; ³Unité Inserm U 1011, Services de ⁴Chirurgie Endocrinienne; ⁵d'Anatomie Pathologique; ⁶de Nutrition, CHRU de Lille; and ⁷Department of Biostatistics, Université Lille 2, France

Prospective Study of the Long-Term Effects of Bariatric Surgery on Liver Injury in Patients Without Advanced Disease

PHILIPPE MATHURIN,*^{,‡} ANTOINE HOLLEBECQUE,^{*,‡} LAURENT ARNALSTEEN,^{§,||} DAVID BUOB,[¶] EMMANUELLE LETEURTRE,[¶] ROBERT CAIAZZO,^{§,||} MARIE PIGEYRE,[#] HÉLÈNE VERKINDT,^{||} SÉBASTIEN DHARANCY,^{*,‡} ALEXANDRE LOUVET,^{*,‡} MONIQUE ROMON,[#] and FRANÇOIS PATTOU^{§,||}

*Service d'Hépato-Gastroentérologie, ‡Unité Inserm U 795, [§]Unité Inserm U 859, Services de, ^{II}Chirurgie Endocrinienne, [¶]d'Anatomie Pathologique, #de Nutrition, CHRU de Lille, Université Lille 2, France

Table 4. Effects of Bariatric Surgery on Clinical and Biological Parameters at 1 and 5 Years

				P value, paired t test		
Variables	Before surgery	1 Year	5 Years	Before vs 1 year	Before vs 5 years	1 Year vs 5 years
Age, mean \pm SD, y	41.5 ± 9.6	NA	NA	NA	NA	NA
BMI, mean \pm SD, kg/m ²	50 ± 7.6	39 ± 8.2	37.7 ± 8.4	.00001	.00001	.00001
Diabetes mellitus, n (%)	94 (24.8)	46 (12.1)	24 (10.8)	.00001	.00001	NS
Arterial hypertension, n (%)	185 (48.8)	139 (36.7)	85 (37)	.00001	.0005	NS
Systolic blood pressure, mean \pm SD, mm Hg	135 ± 19	128 ± 15	129 ± 17	.00001	.0005	NS
Diastolic blood pressure, mean \pm SD, mm Hg	73 ± 13	70 ± 11	70 ± 12	.00003	.0003	NS
Cholesterolemia, mean \pm SD, g/L	2.04 ± 0.39	1.85 ± 0.44	1.89 ± 0.46	.00001	.00001	.01
Serum triglycerides, mean \pm SD, g/L	1.67 ± 2.1	1.2 ± 0.76	1.06 ± 0.67	.00001	.00001	.00001
ALT, mean \pm SD, IU/L	30.1 ± 21.7	21.4 ± 14	22.8 ± 14.1	.00001	.00003	NS
GGT, mean \pm SD, <i>IU/L</i>	39.9 ± 42.4	30 ± 27.8	29.2 ± 32	.00001	.00001	.02
Fasting glucose, mean \pm SD, g/L	1.18 ± 0.65	0.96 ± 0.3	0.94 ± 0.25	.00001	.00001	.05
Insulin resistance index, mean \pm SD	3.2 ± 0.35	2.84 ± 0.35	2.83 ± 0.35	.00001	.00001	NS

ALT, alanine aminotransferase; BMI, body mass index; GGT, γ -glutamyl transferase; NA, not applicable; NS, not significant.

Table 5. Effects of Bariatric Surgery on Histologic Parameters at 1 and 5 Years

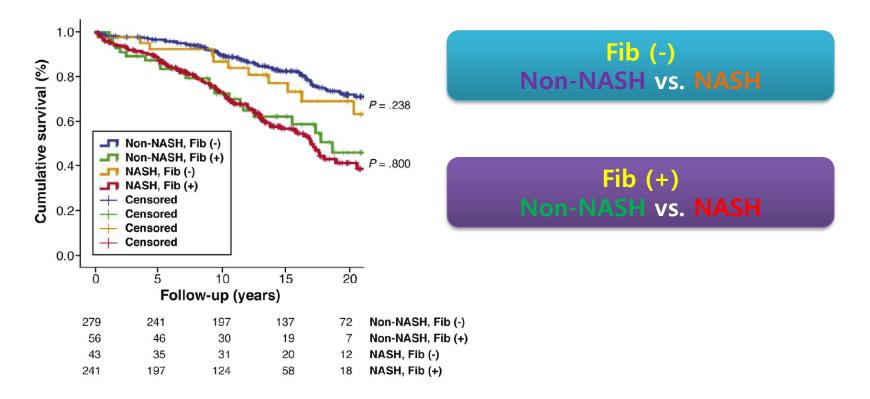
	1 Year (n = 267)	5 Years (n = 211)	<i>P</i> value, paired <i>t</i> test		
Before surgery $(n = 362)$			Before vs 1 year	Before vs 5 years	1 Year vs 5 years
37.4 ± 25.5	15.3 ± 19.8	16 ± 27.3	.00001	.00001	.5
106 (29)	15 (5.6)	18 (8.5)	.00001	.00001	.5
1.97 ± 1.33	1.07 ± 1.26	1 ± 1.33	.00001	.00001	.07
0.18 ± 0.41	0.196 ± 0.45	0.23 ± 0.45	.7	.1	.7
0.20 ± 0.47	0.12 ± 0.36	0.1 <u>+</u> 0.33	.001	.001	.07
0.27 ± 0.55	0.41 ± 0.69	0.36 ± 0.59	.002	.001	.9
					J
280 (77.4)	181 (67.8)	147 (69.7)			
67 (18.5)	69 (25.8)	55 (26)			
13 (3.6)	10 (3.7)	6 (2.8)			
	$(n = 362)$ 37.4 ± 25.5 $106 (29)$ 1.97 ± 1.33 0.18 ± 0.41 0.20 ± 0.47 0.27 ± 0.55 $280 (77.4)$ $67 (18.5)$	$\begin{array}{c} (n = 362) & (n = 267) \\ \hline 37.4 \pm 25.5 & 15.3 \pm 19.8 \\ 106 (29) & 15 (5.6) \\ \hline 1.97 \pm 1.33 & 1.07 \pm 1.26 \\ \hline 0.18 \pm 0.41 & 0.196 \pm 0.45 \\ \hline 0.20 \pm 0.47 & 0.12 \pm 0.36 \\ \hline 0.27 \pm 0.55 & 0.41 \pm 0.69 \\ \hline 280 (77.4) & 181 (67.8) \\ \hline 67 (18.5) & 69 (25.8) \\ \hline \end{array}$	$\begin{array}{c cccc} (n=362) & (n=267) & (n=211) \\ \hline 37.4\pm25.5 & 15.3\pm19.8 & 16\pm27.3 \\ 106(29) & 15(5.6) & 18(8.5) \\ \hline 1.97\pm1.33 & 1.07\pm1.26 & 1\pm1.33 \\ 0.18\pm0.41 & 0.196\pm0.45 & 0.23\pm0.45 \\ 0.20\pm0.47 & 0.12\pm0.36 & 0.1\pm0.33 \\ 0.27\pm0.55 & 0.41\pm0.69 & 0.36\pm0.59 \\ \hline 280(77.4) & 181(67.8) & 147(69.7) \\ 67(18.5) & 69(25.8) & 55(26) \\ \end{array}$	$\begin{array}{c cccc} Before \ surgery \\ (n = 362) & 1 \ Year \\ (n = 267) & (n = 211) & Before \ vs \\ 1 \ year \\ \end{array} \\ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Before surgery (n = 362)1 Year (n = 267)5 Years (n = 211)Before vs 1 yearBefore vs 5 years 37.4 ± 25.5 15.3 ± 19.8 16 ± 27.3 .00001.00001 $106 (29)$ $15 (5.6)$ $18 (8.5)$.00001.00001 1.97 ± 1.33 1.07 ± 1.26 1 ± 1.33 .00001.00001 0.18 ± 0.41 0.196 ± 0.45 0.23 ± 0.45 .7.1 0.20 ± 0.47 0.12 ± 0.36 0.1 ± 0.33 .001.001 0.27 ± 0.55 0.41 ± 0.69 0.36 ± 0.59 .002.001 $280 (77.4)$ $181 (67.8)$ $147 (69.7)$.002.001 $67 (18.5)$ $69 (25.8)$ $55 (26)$.002.001

Table 6. Specific Evolution of 99 Patients with Probable or Definite NASH (NAS \geq 3)

45				<i>P</i> value, paired <i>t</i> test		
Variables	Before surgery	1 Year	5 Years	Before vs 1 year	Before vs 5 years	1 Year vs 5 years
Extent of steatosis, mean \pm SD, (%) NAS, mean \pm SD	66.3 ± 18.3 3.71 ± 0.86	28.8 ± 24.5 2.13 ± 1.48	25.7 ± 25.2 1.92 ± 1.56	.00001 .00001	.00001 .0001	.14 .04
NAS inflammation, mean \pm SD	0.53 ± 0.55 0.63 ± 0.67	0.49 ± 0.64 0.33 ± 0.55	0.56 ± 0.56 0.26 ± 0.48	.5	.2 001	1 .13
Extent of fibrosis, mean \pm SD	0.71 ± 0.79	0.76 ± 0.86	0.66 ± 0.79	.65	.77	.5
Fibrosis score, n (%) FO	55 (56)	36 (47)	31 (51)			_
F1 F2	33 (33) 10 (10)	28 (36) 9 (12)	22 (37) 6 (10)			
F3	1(1)	4 (5)	1(2)			

NAS, nonalcoholic fatty liver disease score.

OBES SURG (2015) 25:2280–2289 DOI 10.1007/s11695-015-1691-x	X
ORIGINAL CONTRIBUTIONS	
Bariatric Surgery and Non-Alco	e e
a Systematic Review of Liver Bi	ochemistry and Histology


Bariatric surgery is associated with a significant reduction in the weighted incidence of a number of histological features of NAFLD including

- steatosis (50.2 and 95 %CI of 35.5-65.0),
- fibrosis (11.9 and 95 %Cl of 7.4–16.3 %),
- hepatocyte ballooning (67.7 and 95 %CI 56.9–78.5)
- lobular inflammation (50.7 and 95 %CI 26.6–74.8 %)

CrossMark

Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease

Paul Angulo,¹ David E. Kleiner,² Sanne Dam-Larsen,³ Leon A. Adams,⁴ Einar S. Bjornsson,⁵ Phunchai Charatcharoenwitthaya,⁶ Peter R. Mills,⁷ Jill C. Keach,⁸ Heather D. Lafferty,⁷ Alisha Stahler,⁸ Svanhildur Haflidadottir,⁹ and Flemming Bendtsen¹⁰

Increased Perioperative Mortality Following Bariatric Surgery Among Patients With Cirrhosis

JEFFREY D. MOSKO* and GEOFFREY C. NGUYEN,*,*

*Division of Gastroenterology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and [‡]Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland

Mortality	Table 2. Multivariate An Mortality	alysis of Predictors of In-Ho	ospital
without LC : 0.3 %		Adjusted odds ratio (95% confidence interval)	<i>P</i> value
compensated LC : 0.9 %	Liver disease status No cirrhosis	Ref	
decompensated LC : 16.3 %	Compensated cirrhosis Decompensated cirrhosis	2.2 (1.0–4.6) 21.1 (5.4–82.3)	.041 <.0001

Bariatric surgery in patients with cirrhosis should be performed while liver disease is well compensated.

Contents

- Introduction
- Etiology and Mechanism of Fatty liver disease
- Assessment of Fatty liver disease
- Therapeutic approach of Fatty liver disease
- Conclusion

- 1. 지방간 환자가 증가하고 있으며 향후 간질환의 주된 원인이 될 것이다.
- 2. 체중 감량과 식이 조절이 가장 중요한 치료 방법이다.
- 3. 간내 섬유화 소견이 가장 중요한 예후 인자이다.
- 생활 습관 조절 등 내과적 치료에 반응하지 않는 지방간 환자들에서 수술적 치료를 고려할 수 있다.
- 5. 간경변이 동반된 환자에서 수술적 치료는 신중하게 고려해야 한다.

Thank you!