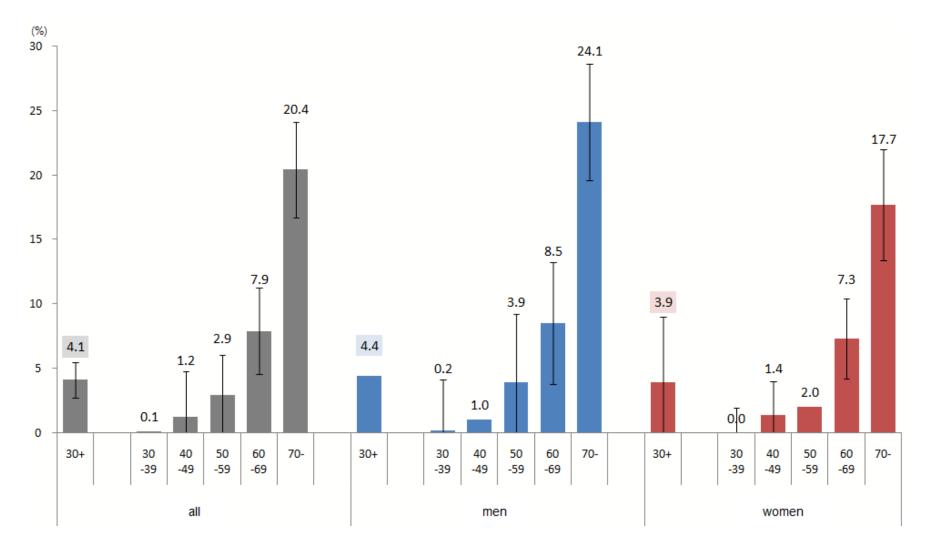

신장환자 약물처방

동아대학교 의과대학 신장내과학교실 이수미

Contents

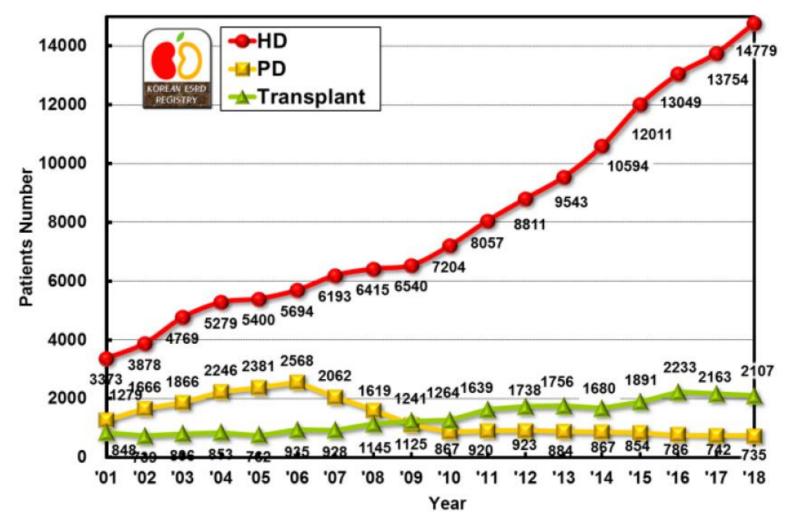
• Prevalence of chronic kidney disease


- Prescribing principles for chronic kidney disease
- Which drugs are harmful to your kidneys?
- Contrast induced nephropathy

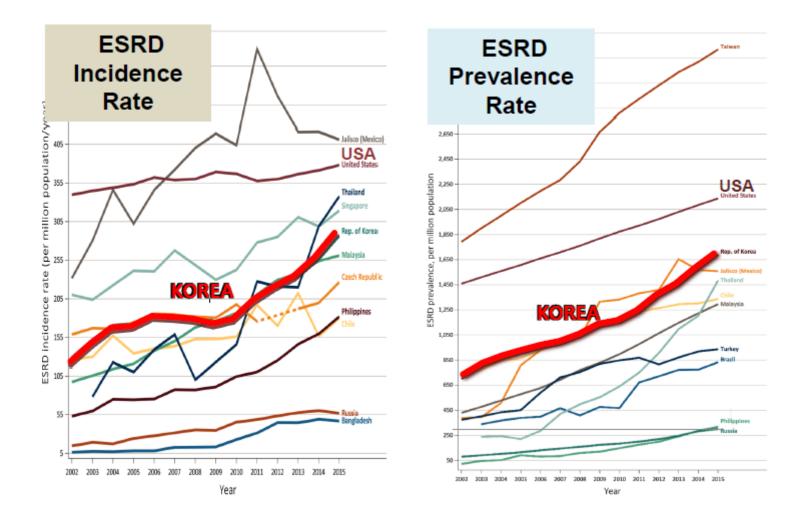
Epidemiology of CKD

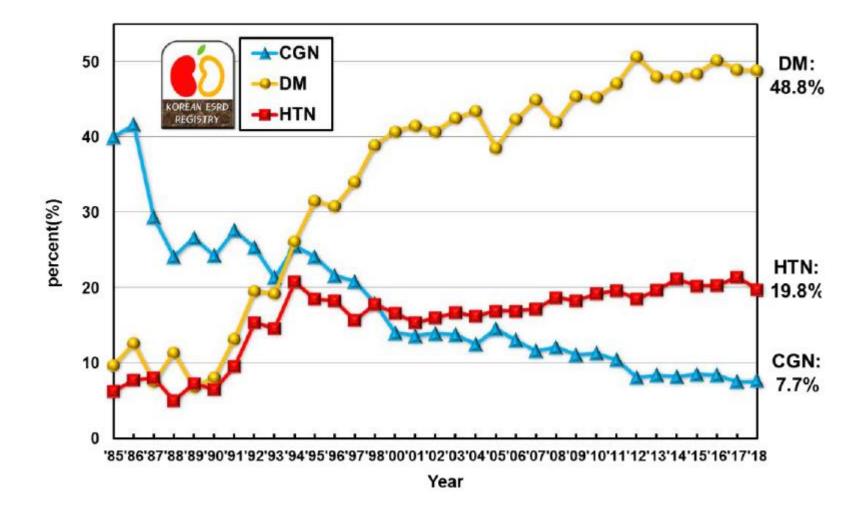
- Changes in the demographics of the population
- Under-recognition of earlier stages of CKD
- Improved survival from nonrenal disease (particularly CVD)

Prevalence of CKD (Stage 3 to 5) by Sex and Age, 2013

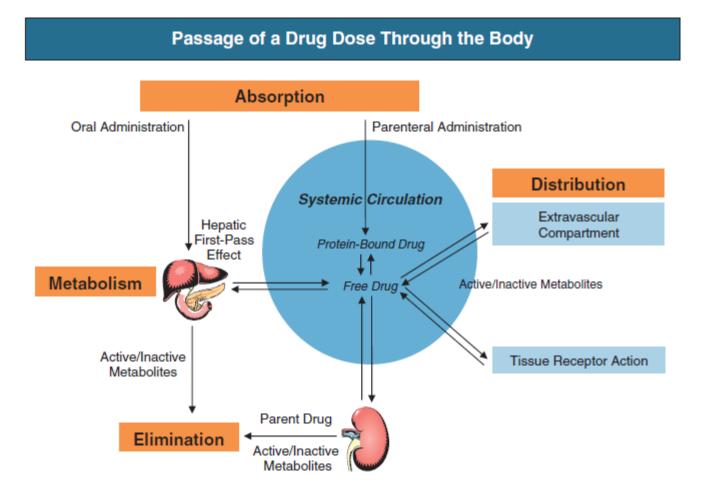


CDC, 2013


Prevalence of Renal Replacement Therapy


Incidence of Renal Replacement Therapy

International Comparison


Three Major Causes of ESRD

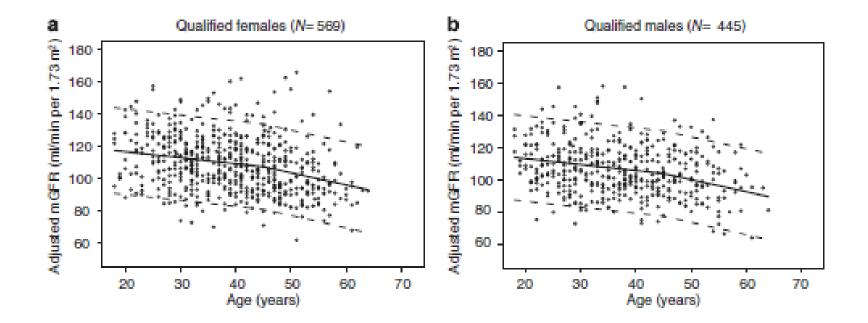
Contents

- Prevalence of chronic kidney disease
- Prescribing principles for chronic kidney disease
- Which drugs are harmful to your kidneys?
- Contrast induced nephropathy

Pharmacokinetic Principles

Estimating Renal Function for Drug Dosage

- Creatinine
- Creatinine based estimation of renal function for prescription medication dosage (adult)
 - Creatinine clearance : Cr excretion in 24-hour urine collection, age/gender/weight/race
 - ✓ Cockcroft-Gault equation : most widely used
 - Estimated glomerular filtration rate (eGFR) by Modification of Diet in Renal Disease (MDRD) formula
 - ✓ Mild (30-60 ml/min), moderate (10-30 ml/min), severe (dialysis)


Formulas to Assess Renal Function

AU	THOR ESTIMATIO	NI	FORMULA			1	PURPOSE	_
	검사명	K	검사결과	S	단위	참고치	검체명	
1	Total calcium	▼	7.4		mg/dL	8.2-10.5	SERUM	age
2	Phosphorus		3.2		mg/dL	2.5-4.5	SERUM	-
3	BUN		12		mg/dL	7-20	SERUM	
4	Creatinine		1.65		mg/dL	0.51-0.95	SERUM	
5	MDRD eGFR		32.4		ml/min/1.7	>60	SERUM	dosing
6	CKD EP1 eGFR		30.5		ml/min/1.7	>60	SERUM	n in
7	T.protein	▼	5.1		g/dL	6.6-8.3	SERUM	
8	Albumin	▼	2.6		g/dL	3.5-5.2	SERUM	
9	AST (SGOT)		20		U/L	0-35	SERUM	
10	ALT (SGPT)		12		U/L	0-35	SERUM	dosing
11	T.bilirubin		0.5		mg/dL	0.2-1.2	SERUM	on in
12	Sodium		143		mmo1/L	136-146	SERUM	
13	Potassium		3.7		mmo1/L	3.5-5.1	SERUM	
14	Chloride		117		mmo1/L	101-109	SERUM	
15	CO2 Total	▼	17		mmo1/L	21-31	SERUM	
16	Mg		1.9		mg/dl	1.8-2.6	SERUM	
17	Cystatin-C		2.01		mg/L	0.5-1.0	SERUM	
18	Cystatin C eGFR		29.4		ml/min/1.7	>60	SERUM	
19	Hemolysis		0				SERUM	
20	lcteric		0				SERUM	
21	Lipemic		0				SERUM	

Factors Affecting Serum Creatinine Levels

F	Factors Affecting Serum Creatinine Concentration								
Factors	Effect on Creatinine	Mechanism/Comment							
Age	Decrease	Reduced creatinine generation caused by age-related decline in muscle mass							
Female gender	Decrease	Reduced creatinine generation caused by reduced muscle mass							
Race									
African American	Increase	Higher creatinine generation caused by higher average muscle mass in African Americans; not known how muscle mass in other races compares with that of African Americans or Caucasians							
Diet									
Vegetarian	Decrease	Decrease in creatinine generation							
Ingestion of cooked meats and creatinine supplements	Increase	Transient increase in creatinine generation, although this may be blunted by transient increase in GFR							
Body Habitus									
Muscular	Increase	Increased muscle generation caused by increased muscle mass and/or increased protein intake							
Malnutrition, muscle wasting, amputation	Decrease	Reduced creatinine generation caused by reduced muscle mass and/or reduced protein intake							
Obesity	No change	Excess mass is fat, not muscle mass, and does not contribute to increased creatinine generation.							
Medications									
Trimethoprim, cimetidine, fibric acid derivatives other than gemfibrozil	Increase	Reduced tubular secretion of creatinine							
Keto acids, some cephalosporins	Increase	Interference with alkaline picrate assay for creatinine							

Effects of Age on Renal Function

Kidney Int 2009; 75: 1079–1087

Definition of CKD

Criteria for CKD (either of the following present for >3 months)

Markers of kidney damage (one or more)	Albuminuria (AER ≥30 mg/24 hours; ACR ≥30 mg/g [≥3 mg/mmol]) Urine sediment abnormalities Electrolyte and other abnormalities due to tubular disorders Abnormalities detected by histology Structural abnormalities detected by imaging History of kidney transplantation
Decreased GFR	GFR <60 ml/min/1.73 m ² (GFR categories G3a-G5)

Abbreviations: CKD, chronic kidney disease; GFR, glomerular filtration rate.

Staging of CKD

■ S.O.A.P.

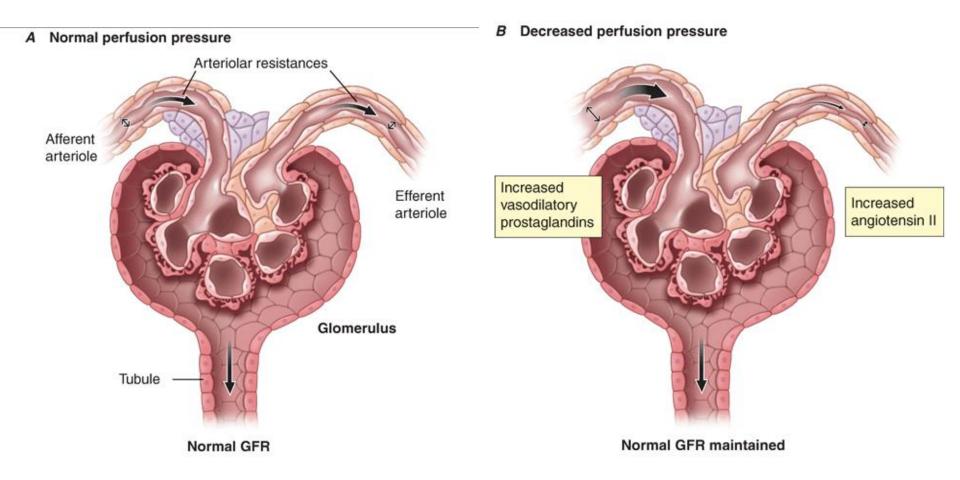
- # CKD G4A3
- h/o edema 20170103 171124 180206 180513 180525
- solondo 60 171207
- # DM (1997) lantus, repaglinide, 올메텍 20, 트리메부틴 (prof.서성환)
- # DMR/DMN
- # UA s/p stent (prof.김무현) 2017
- R/O cardiac LC (2018), ascites tapping

S.O.A.P.

# CKD G3bA3	mment
# s/p Fx, femur neck, Rt (2018, prof.김현준	
	mmon cause of nephrotic syndrome in childhood
# DM (2008)	st outcome after kidney transplantation
# DMR (2018)	st common disease caused by a mutation in a single
	ne mmon condition in children
# HTN	e genetic disorder
# Pancreatitis (prof.노명환)	

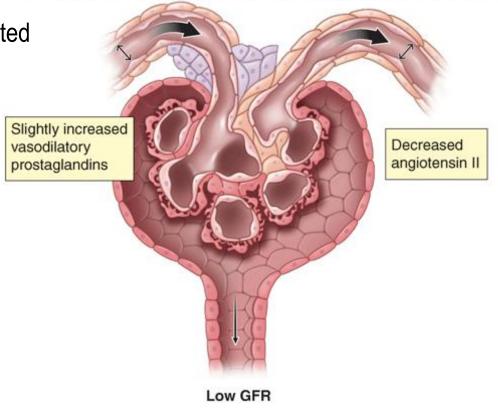
Contents

- Prevalence of chronic kidney disease
- Prescribing principles for chronic kidney disease
- Which drugs are harmful to your kidneys?
- Contrast induced nephropathy


Some Samples of Nephrotoxic Drugs

- ACE inhibitors, ARBs
- Aminoglycosides (Amikacin, Gentamicin, Tobramycin)
- Antifungals (Amphotericin)
- Antivirals (Acyclovir, Cidofovir, Foscarnet, Indinavir)
- Calcineurin inhibitors (Cyclosporine, Tacrolimus)
- Chemotherapeutics (Cisplatin, Ifosfamide)
- Lithium
- NSAIDs
- Proton pump inhibitors
- Radiocontrast media

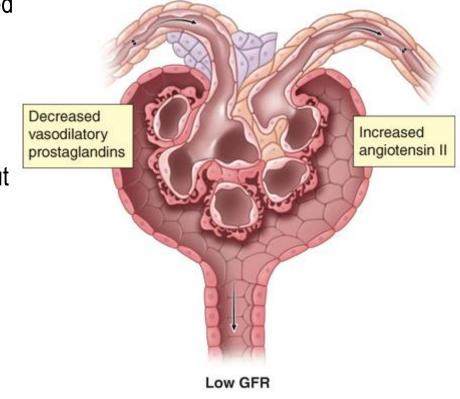
Risk Factors for Drug-Induced Nephrotoxicity


- "Absolute" or "effective" intravascular volume depletion
- Age older than 60 years
- Diabetes
- Exposure to multiple nephrotoxins
- Heart failure
- Sepsis
- Underlying renal insufficiency

GFR Autoregulation

Mechanisms of Drug Nephrotoxicity : ACEi/ARBs

- Mechanism
 - Impairment of angiotensin II-mediated efferent arteriole vasoconstriction during renal hypoperfusion
- Prevention and management
 - Withdraw in renal hypoperfusion



D Decreased perfusion pressure in the presence of ACE-I or ARB

Mechanisms of Drug Nephrotoxicity : NSAIDs

- Mechanism
 - Hemodynamically induced AKI caused by vasoconstriction via reduced prostaglandin production
 - Recruitment and activation of lymphocytes
 - \rightarrow acute and chronic TIN, with or without nephrotic syndrome
- Prevention and management
 - Avoid use
 - Withdraw during hypoperfusion

C Decreased perfusion pressure in the presence of NSAIDs

Mechanisms of Drug Nephrotoxicity : Aminoglycosides

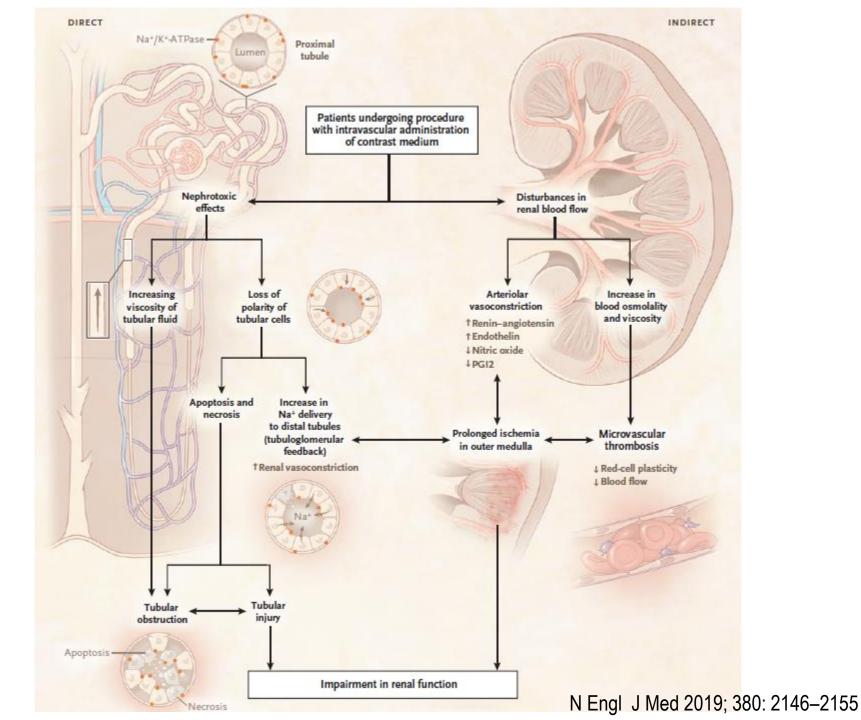
- Incidence of AKI : 10-25%
- Mechanism
 - In proximal tubule, aminoglycosides bind to anionic phospholipid, are delivered to megalin, are taken up into the cell, accumulate, and cause direct toxicity
- Prevention and management
 - Alternative if possible
 - Monitor drug concentrations
 - Avoid multiple daily doses
 - Withdraw if Cr rises

AMINOGLYCOSIDE TOXICITY

Major toxic effects of Aminoglycosides are Ototoxicity & Nephrotoxicity

Contents

- Prevalence of chronic kidney disease
- Prescribing principles for chronic kidney disease
- Which drugs are harmful to your kidneys?
- Contrast induced nephropathy


Contrast induced nephropathy

- Definition
- Pathophysiology
- Risk factors
- Prognosis
- Preventive strategies

Contrast induced nephropathy

- At 48 hrs after a radiological procedure with iodine based contrast media
- Elevation of serum *Cr* ≥ 25% or 0.5 mg/dL of baseline
- **Exclusion** of other explanations (other nephrotoxic agents, prerenal, cardiorenal syndrome ...)

Risk factors

Associated with the patient

- Concomitant acute kidney injury of other origins
- Reduced GFR (<45 ml/min/1.73m² or <60 ml/min/1.73 m² for intravenous or intra-arterial administration)
- Previous AKI or CKD
- Diabetic nephropathy
- Dehydration
- Anaemia
- Poor haemodynamic status
- Age > 70 years
- Concurrent nephrotoxic drug treatment

Associated with the procedure

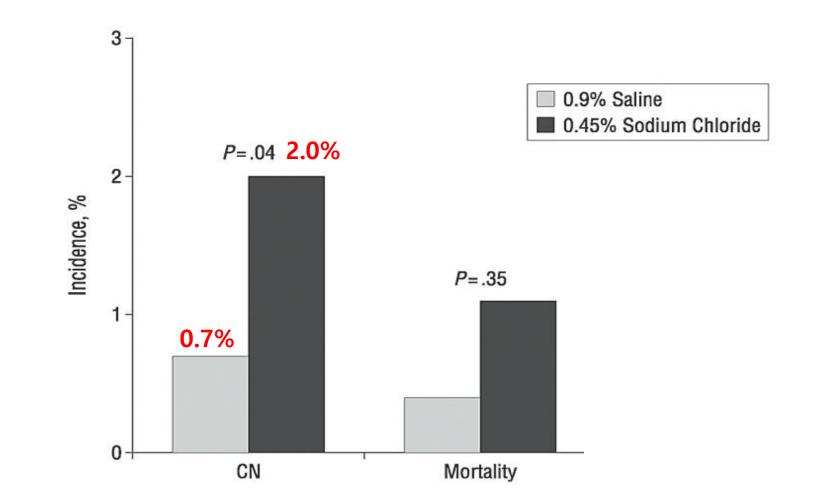
- Large doses of contrast medium
- Multiple administrations of contrast medium
- Use of contrast medium with excessive osmolality or viscosity
- intra-arterial administration

Prognosis

- The 3rd most common cause of AKI in hospital
- Most : self-limited
 - ✓ Increase over 12h to 48h, peak at 4 to 5 days
 - ✓ Return to baseline value within 1 to 2 weeks
- <1% : need dialysis (3% in CKD, 12% in CKD with diabetes)
- Associated with increased in-hospital morbidity and mortality

Prevention

- Avoid volume depletion and NSAIDs
 - Avoid ACEi/ARB insufficient data
- Dose and type of contrast agent
 - Use lowest effect dose and avoid repeated studies (within 48 to 72 hrs)
 - Use Iso-osmolal agent or nonionic low-osmolal agents
- Fluid administration
 - Volume supplementation
 - Isotonic saline vs. Hypotonic saline
 - Sodium bicarbonate vs. Sodium chloride


Fluid administration : Volume Supplementation

Study	Number of patients	Baseline serum creatinine	Duration of infusion before contrast	Duration of infusion after contrast	Infusion rate	Infusate	CIN rate
Solomon <i>et al.</i> ¹	78	2.1 mg/dl	12 h	12 h	1 ml/kg per h	0.45 Saline versus 0.45 saline+mannitol versus 0.45 saline+furosemide	11 versus 28 versus 40%
Taylor <i>et al.</i> ²	36	1.74 mg/dl	12 h versus <u>1</u> –1 h	12 h versus 6 h	75 versus 300 ml/h	0.45 Saline	11.1 versus 5.6%
Mueller et al. ⁴	1383	0.93 mg/dl	Started at ² 0800 hours	12 h	1 ml/kg per h	0.9 Saline versus 0.45 saline	0.7 versus 2.0%
Trivedi <i>et al.</i> ⁵	53	106 µmol/l	12 h versus none	12 h versus none	1 ml/kg per h	0.9 Saline	3.7 versus 34.6%
Bader <i>et al.</i> ⁶	39	0.9 mg/dl	12 h versus bolus only	12 h versus none	2000 ml/24 h	0.9 Saline	5.3 versus 15%
Krasuski <i>et al</i> . ¹⁵	63	2.1 mg/dl	12 h versus 20 min	12 h	1 ml/kg per h versus 250 ml/20 min	0.45 Saline	0 versus 10.8%
Merten <i>et al.</i> ¹⁶	119	1.80 mg/dl	1 h	6 h	3 ml/kg per h before 1 ml/kg per h after	Sodium bicarbonate versus saline	1.7 versus 13.6%

CIN is defined as an increase in serum creatinine of at least 0.5 mg/dl within 48 h,^{1,2,4,5} an increase in serum creatinine of 25% or more within 48 h,¹⁶ or a decrease in glomerular filtration rate of more than 50% within 48 h.⁶

Kidney Int 2006; 100: S16-S19

Fluid administration : Isotonic saline vs. Hypotonic saline

Arch Intern Med 2002; 162: 329-336

Fluid administration

: Sodium bicarbonate vs. Sodium chloride

- Sodium bicarbonate
 - ✓ Alkalizing the tubular urine
 - > \downarrow free radical formation
 - ↓ oxidant injury

Lower rate of CIN

- Sodium bicarbonate is alternative ?
 - Systemic review of RCTs mixed results

Fluid administration : Sodium bicarbonate vs. Sodium chloride

Trial	Contra	ast-Induc	ed Nephr	opathy		Odds Ratio (Cl)	% Weight
	Bicar	bonate	Con	itrol			
	Yes	No	Yes	No			
Merten et al. 2004	1	68	8	60		0.11 (0.01–0.91)	5.4
Briguori et al. 2007	2	115	11	107		0.17 (0.04–0.78)	8.5
Masuda et al. 2007	2	29	10	20		0.14 (0.03–0.70)	7.9
Ozcan et al. 2007	4	84	12	76		0.30 (0.09–0.97)	11.6
Recio-Mayoral et al. 2007	1	55	12	43		0.07 (0.01–0.52)	5.5
Shaikh et al. 2007	14	145	19	142	÷	0.72 (0.35–1.49)	16.9
Adolph et al. 2008	3	69	2	74		1.61 (0.26–9.92)	6.8
Brar et al. 2008	21	154	24	154	-d	0.88 (0.47–1.64)	18.2
Maicli et al. 2008	25	225	29	223		0.85 (0.49–1.50)	19.2
Pooled	73	944	127	899	Bicarbonate Superior Contro Superio	•	100.0
					0.01 0.1 1 Odds Ratio (CI)	0	

Wien Klin Wochenschr 2008; 120: 742–748

Fluid administration : Sodium bicarbonate vs. Sodium chloride

Outcome	Sodium Bicarbonate (N=2511)	Sodium Chloride (N=2482)	Odds Ratio (95% CI)	P Value	Acetylcysteine (N = 2495)	Placebo (N = 2498)	Odds Ratio (95% CI)	P Value
	no. of po	atients (%)			no. of pati	ents (%)		
Primary end point*	110 (4.4)	116 (4.7)	0.93 (0.72–1.22)	0.62	114 (4.6)	112 <mark>(</mark> 4.5)	1.02 (0.78–1.33)	0.88
Secondary end points								
Contrast-associated acute kidney injury†	239 (9.5)	206 (8.3)	1.16 (0.96–1.41)	0.13	228 (9.1)	217 (8.7)	1.06 (0.87–1.28)	0.58
Death by 90 days	60 (2.4)	68 (2.7)	0.87 (0.61–1.24)	0.43	67 (2.7)	61 (2.4)	1.10 (0.78–1.57)	0.59
Need for dialysis by 90 days	32 (1.3)	29 (1.2)	1.09 (0.65–1.81)	0.73	30 (1.2)	31 (1.2)	0.97 (0.58–1.60)	0.90
Persistent kidney impairment by 90 days	28 (1.1)	25 (1.0)	1.10 (0.64–1.91)	0.71	26 (1.0)	27 (1.1)	0.96 (0.56–1.66)	0.89
Hospitalization with acute coronary syn- drome, heart failure, or stroke by 90 days	272 (10.8)	251 (10.1)	1.08 (0.90–1.29)	0.40	244 (9.8)	279 (11.2)	0.86 (0.71–1.04)	0.11
All-cause hospitalization by 90 days	1071 (42.7)	1052 (42.4)	1.01 (0.90–1.13)	0.85	1069 (42.8)	1054 (42.2)	1.03 (0.91–1.15)	0.64

N Engl J Med 2018; 378: 603–614

Pharmacological Prevention: Hydration

Fluid	Timing of administration	Recommendation
Optimum hydration p	protocol	
Normal saline 12 hrs before procedure		1ml/kg/h for 12hrs before and after contrast administration
When not practical (i	.e. for outpatients)	
Isotonic saline or NaHCO ₃ solution	1-3 hrs before procedure	3ml/kg/h for 1-3 hrs before and 1ml/kg/h for 6 hrs after contrast administration

* Post-procedure hydration may be more important than pre-procedure fluids.

Pharmacological Prevention: N-acetylcysteine

- Muteran [®] (1cap =200mg)
 - Used orally
 - 600mg-1200mg twice daily : day -1 and 0
- Plausible mechanism
 - Scavenge oxygen derived free radicals
 - Improving renal hemodynamics
 - Prevent direct toxic tissue damage
- Conflicting data
- Little adverse effects (nausea..) and inexpensive (1C=64 KRW)
- Benefit of iv remains uncertain

Pharmacological Prevention

김 O 걸 (M/72)		검사명	Ķ	검사결과	S	단위	참고치	검체명
CKD G3bA3	1	Total calcium	Y	8.5	-		8.2-10.5	SERUM
AKI d/t R/O postop	1			0.5 3.8	-	mg/dL	2.5-4.5	SERUM
Eso ca s/p VATS OP 160222 (prof.정상석)		Phosphorus	-	3.0 169	-	mg/dL	2.5-4.5 74-106	SERUM
S-colon ca s/p LAR 160222 (prof.박기재)		Glucose	-		_	mg/dL	74-106	
DM (2016)		BUN		33	_	mg/dL		SERUM
·LC (unknown child A) prof.이성욱	_	Creatinine	_	3.30	_	mg/dL	0.67-1.17	SERUM
- [외래]2017-11-22 / 1 / NI / 이수미			nue	ะเป็น				SERUM
		sg:- CT 찍기 전 1시간부						SERUM
Sodium Bicarbonate 8.4% 20ml/amp 2AMP QD 1day	175	MTX:1 원내[52] *Msg:-	CT	찍기 전 1시간*	부터	80cc/hr	r 주* ^{7.2}	SERUM
		다. *Msg:N/S 후 라식스 주					0	SERUM
┗[D/C] Lasix 20mg/amp D/C 1회							·8.3	SERUM
+ [외래]2017-09-28 / 6 / NI / 이수미							·5.2	SERUM
+ [외래]2017-09-28 / 5 / NI / 이수미							²-1.52	SERUM
+ [외래]2017-09-28 / 4 / NI / 이수미)	SERUM
- [외래]2017-09-28 / 2 / NI / 이수미)	SERUM
📃 🛛 Ab Screening Test 1회 (Blood, Whole) D/C1을	말						20	SERUM
Admission Profile 2 (LM1111-23) 1회 (Blood, S	erum)						1.2	SERUM
Electrolyte Profile (LM1126-29) 1회 (Blood, S	erum)						·146	SERUM
CRP 1회 (Blood, Serum)							·5.1	SERUM
Routine CBC (LMO131-38) 1회 (Blood, Whole)							·109	SERUM
WBC Diff. Count (LMO141-54) 1회 (Blood, Whole	9)						31	SERUM
RBC (320mL) 1회 (Blood, Whole) Matching D/C	1일 #M	sg:Shour 주세요					-	
Peniramin 4mg/amp 1AMP QD 1day IV 원내[52]	*Msg:	pre T/F						
Renamezin@/cap 2CAP BID 60day BH1								
Muteran© 200mg/cap 3CAP BID 2day BP								

- Estimating renal function is essential in renal drug dosage
 - Cockcroft-Gault equation or eGFR by MDRD formula
- Cautious use of potentially nephrotoxic agents and procedures
 - ACEi/ARB, NASIDs, Antibiotics, Radiocontrast ...
- CIN is a common and potentially serious
 - The risk of CIN is elevated in patients with **CKD (particularly DM CKD)**
 - <u>Adequate IV volume expansion</u> with isotonic saline before/after the procedure can lessen the probability of CIN